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Water quality and the grazing animal’

R. K. Hubbard*?, G. L. Newtont, and G. M. Hill}

*Southeast Watershed Research Laboratory, USDA-ARS, Tifton, GA 31793 and
tDepartment of Animal and Dairy Science, University of Georgia, Tifton 31793

ABSTRACT: Grazing animals and pasture produc-
tion can affect water quality both positively and nega-
tively. Good management practices for forage produc-
tion protect the soil surface from erosion compared with
conventionally produced crops. Grazing animals and
pasture production can negatively affect water quality
through erosion and sediment transport into surface
waters, through nutrients from urine and feces dropped
by the animals and fertility practices associated with
production of high-quality pasture, and through patho-
gens from the wastes. Erosion and sediment transport
is primarily associated with high-density stocking and/
or poor forage stands. The two nutrients of primary
concern relating to animal production are N and P.
Nitrogen is of concern because high concentrations in
drinking water in the NO; form cause methemoglobi-
nemia (blue baby disease), whereas other forms of N
(primarily nitrite, NO,) are considered to be potentially
carcinogenic. Phosphorus in the PO, form is of concern
because it causes eutrophication of surface water bod-
ies. The effect of grazing animals on soil and water
quality must be evaluated at both the field and water-

shed scales. Such evaluation must account for both di-
rect input of animal wastes from the grazing animal
and also applications of inorganic fertilizers to produce
quality pastures, Watershed-scale studies have primar-
ily used the approach of nutrient loadings per land area
and nutrient removals as livestock harvests. A number
of studies have measured nutrient loads in surface run-
off from grazed land and compared loads with other
land uses, including row crop agriculture and forestry.
Concentrations in discharge have been regressed
against standard grazing animal units per land area.
Watersheds with concentrated livestock populations
have been shown to discharge as much as 5 to 10 times
more nutrients than watersheds in cropland or forestry.
The other major water quality concern with grazing
animals is pathogens, which may move from the wastes
into surface water bodies or ground water. Major sur-
face water quality problems associated with pathogens
have been associated with grazing animals, particu-
larly when they are not fenced out from streams and
farm ponds. This paper presents an overview of water
quality issues relating to grazing animals.
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Introduction

Pollution of surface and ground waters from animal
wastes is of growing environmental concern. High load-
ing rates of sediment, N, P, and pathogens to soils and
waters can occur from animal operations, such as graz-
ing (Besser et al., 1993; Isaacson et al., 1993; Millard
et al. 1994, Guan and Holley, 2003). Concentrations of
N in excess of 10 mg/L in the nitrate (NOj) form render
groundwater unsuitable for drinking water for humans
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(Abbott, 1949; Lenain, 1967; Federal Register, 1975).
High N concentrations entering streams or lakes may
also contribute to eutrophication. Phosphate is ad-
sorbed onto sediments and can be transported with the
sediments to lakes and streams where its most signifi-
cant effect is eutrophication (Clark et al., 1985). Animal
waste has been shown to be a source of microorganisms
pathogenic to humans (Howell et al., 1995; 1996; Mawd-
sley et al., 1995; Fraser et al., 1998). When surface
runoff or leaching occurs due to excessive irrigation or
rainfall, contamination of water resources by enteric
bacteria may result (Entry et al., 1999). These same
bodies of water are often used for sources of drinking
water or for recreational activities; therefore, elevated
concentrations of enteric bacteria pose a potential
health hazard.

The amount of wet feces produced per 1,000 kg of
animal live weight per day for grazing animals ranges
from 40 to 86 kg for sheep and dairy cattle respectively
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Table 1. Fresh manure production and characteristics

Animal type®*
Item Units® Dairy Beef Sheep Horse
kg (1,000 kg/d)

Total manure® Mean? 86 58 40 51

SD 17 17 11 7.2
Urine Mean 26 18 39 10

SD 4.3 4.2 4.8 0.74
Total solids Mean 12 8.5 11 15

SD 2.7 2.6 3.5 44
Biochemical oxygen demand, 5-d Mean 1.6 1.6 3.1 1.7

SD 0.48 0.75 0.72 0.23
Chemical oxygen demand Mean 11 7.8 11 Nad

SD 24 2.7 2.5 NA
Total Kjeldahl nitrogen® Mean 0.45 0.34 0.42 0.30

SD 0.096 0.073 0.11 0.063
Ammonia nitrogen Mean 0.079 0.086 NA NA

SD 0.083 0.052 NA NA
Total phosphorus Mean 0.094 0.092 0.087 0.071

SD 0.024 0.027 0.030 0.026
Orthophosphorus Mean 0.061 0.030 0.032 0.019

SD 0.0058 NA 0.014 0.0071
Potassium Mean 0.29 0.21 0.32 0.25

SD 0.094 0.061 0.11 0.091
Total coliforms’ Mean 1,100 63 20 490

SD 2800 59 26 490
Fecal coliforms’ Mean 16 28 45 0.092

SD 28 27 27 0.029
Fecal streptococcif Mean 92 31 62 58

SDh 140 45 73 59

“Differences within species according to usage exist, but sufficient fresh manure data to list these differences
were not found. Typical live animal masses for which manure values represent are dairy, 640 kg; beef, 360

kg; sheep, 27 kg; horse, 450 kg (ASAE, 2003).
YAl values are expressed on wet basis.
‘Feces and urine as voided.

dMean estimates within each animal species are comprised of varying populations of data. Maximum
numbers of data points for each species are: dairy, 85; beef, 50; sheep, 39; horse, 31. NA = data not found.

¢All nutrients values are given in elemental form.

fMean bacteria colonies per 1,000 kg of animal mass multiplied by 10%° colonies per 1,000-kg animal/mass
divided by kg of total manure per 1,000 kg of animal mass multiplied by density (lg/m%) equals colonies

3

per m* of manure.

(Table 1). Average amounts of N (kg, wet basis) in ma-
nures range from 0.30 kg for horses to 0.45 kg for dairy
cattle (Table 1). For P, the range is from 0.071 kg for
horses to 0,094 kg for dairy cattle, At both field and
watershed scales, grazing animals hence serve as a
significant source for nutrients and organic matter.,

Environmental Benefits of Forage Production
and Grazing Animals

The soil improvement characteristics of grasslands
have long been recognized (Ball et al., 2002). After land
has been devoted to perennial forages for several years,
the trend is for subsequent arable crops to produce
better than would otherwise have been the case. The
deep root penetration of many forage crops into com-
pacted soil layers can leave channels that improve wa-
ter and air movement and enhance root penetration of
subsequent crops. Perennial grasslands also tend to
make the soil more suitable for subsequent arable crops

in other ways, including improving soil tilth due to the

activity of earthworms, soil insects, and microorgan-
isms. Over time, the nutrient-holding capacity of the
soil increases and various mineral cycles operate to
increase nutrient availability in the surface layer.

Compared with other agricultural land uses, growing
forage crops greatly decreases erosion. Perennial grass
sods are particularly effective in reducing soil erosion
losses. Ball et al. (2002) concluded that if the percentage
of cropland devoted to forage crops were substantially
increased, there would be a considerable improvement
in overall water quality. When livestock are produced
on pasture and the land is not overgrazed, the likelihood
of nutrient contamination of water may be much lower
than that of heavily fertilized conventionally produced
crops. When land has a thick cover of perennial forages,
there is little runoff and therefore less chance for fertil-
izers to be washed away. Most forage crops, especially
perennial grasses, form dense root systems that effec-
tively serve as filters to remove contaminants before
they can seep into the groundwater.
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Organic components of feces and urine from grazing
animals can build soil organic matter reserves, re-
sulting in soils having increased water-holding capac-
ity, increased water-infiltration rates, and improved
structural stability. These changes can decrease soil
loss by wind and water erosion. Soil applied manures
decrease energy needed for tillage and reduce imped-
ance to seedling emergence and root penetration
(Wright, 1998). Manures stimulate the growth of bene-
ficial soil microbial populations, increase microbial ac-
tivity within the soil, and increase the population of
beneficial mesofauna, such as earthworms.

Environmental Problems Associated
with Grazing Animals

Sediment

Water quality of streams, lakes, or other water bodies
may be degraded by excessive amounts of dissolved or
suspended sediment in surface runoff or base flows.
Numerous studies have reported sediment concentra-
tions and loads for a variety of drainage systems (Long
and Bowie, 1963; McGuinness et al., 1971; Griffiths,
1982; Neff, 1982; Carling, 1983), along with information
relating loads to rainfall intensity and duration, runoff
amount, drainage area, or land use (Dragoun and
Miller, 1966; Dendy and Bolton, 1976; Costa, 1977; Os-
try, 1982). Heavy loads of suspended sediment in
streamflow can reflect erosion from grazed pastures
with poor forage stands and heavy traffic from graz-
ing animals.

It has been recognized that for over 90 yr, heavy,
continuous grazing accelerates erosion and runoff
(Rich, 1911; Duce, 1918; Sampson and Weyl, 1918). The
literature is filled with examples of the adverse impacts
of overgrazing on watersheds (Dunford and Weitzman,
1955; Ellison, 1960; Smeins, 1975; Dregne, 1978;
Crouch, 1979). Love (1958) wrote, “There is a large
body of information leading to the conclusion that heavy
grazing has had bad hydrologic consequences.” It is
doubtful that more investigations are needed to empha-
size this conclusion.

Nitrogen

The compound form of N of primary concern is NOg
nitrogen. Nitrate movement into surface and ground
waters is of concern both for health and environmental
quality reasons (Galloway et al., 2003). Nitrate concen-
trations in excess of 10 mg/L cause methemoglobi-
nemia, which is toxic to infants (Federal Register,
1975). Most cases of methemoglobinemia occur after
consuming water with high concentrations of NO; nitro-
gen. Infants are particularly susceptible, as are people
who receive kidney dialysis treatment (Follett and Fol-
lett, 2001). In the United States, NO; nitrogen concen-

_ trations exceed this level in more than 15% of ground-

water samples from four of the 33 major regional aqui-
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fers most commonly used as sources of drinking water
(Nolan and Stoner, 2000). Other effects associated with
elevated concentrations of NOj nitrogen in drinking
water include respiratory infection, alteration of thy-
roid metabolism, and cancers induced by conversion of
NOjg nitrogen to N-nitroso compounds in the body (Fol-
lett and Follett, 2001). Eutrophication of lakes or other
water bodies occurs when excess plant or algal growth
takes place. Nitrogen may be a limiting nutrient to
growth of these species, and hence excess NOj nitrogen
levels entering streams or lakes with surface runoff or
by shallow subsurface flow may cause environmental
quality problems.

Nitrogen exists in soil as NOy, NOg, or NH, nitrogen,
or in organic forms within the soil organic matter frac-
tion. Nitrate ions are repelled by the clay particles in
the soil and generally are not absorbed within the soil
matrix. Hence, as water moves through the soil, NO3
nitrogen generally moves freely with the water. The
actual movement of NOj nitrogen through soil lags be-
hind the wetting front due to mixing processes such
as diffusion and hydrodynamic dispersion, which occur
between the resident soil solution and the infiltrating
water from irrigation or rainfall. Numerous studies
have documented NOj nitrogen concentrations greater
than 10 mg/L in groundwater associated with agricul-
tural activities including cropping enterprises, live-
stock, and grazing (Spalding and Exner, 1980; Hubbard
et al., 1986, 1987; Naney et al., 1987; Sharpley et al.,
1987; Hubbard and Sheridan, 1989, 1994). Nitrate con-
tamination of groundwater can also occur in urban ar-
eas from septic tanks or over fertilization of lawns (Hub-
bard and Sheridan, 1994).

Nitrogen from the urine and feces of grazing animals
can negatively affect water quality when the number
of grazing animals per land area exceeds the N fertility
needs of the forages. Campbell et al. (1977) compared
standard beef cattle pasture stocking rate, double pas-
ture stocking rate (cattle were supplemented with si-
lage when necessary), confinement, and a natural area
and found that NOgz nitrogen concentrations in shallow
groundwater wells at 1.2 m increased at the double
stocking rate compared with the other treatments. A
water quality problem can also occur when the sum
of N from the inorganic fertilizers applied to produce
quality forages plus N from the grazing animals exceeds
N uptake by the forages. An example of such a problem
is shown in Table 2 from Hubbard et al. (1987). This
table shows NOg nitrogen concentrations in shallow
groundwater from a study where dairy lagoon wastewa-
ter was applied by center pivot at two different waste-
water application rates (496 or 1,018 kg of N-ha™
yr')). A control area received N fertilizer at recom-
mended rates (491 of N-ha™l-yr™)) for production of
coastal bermudagrass (Cynondon dactylon L..). All of the
areas were grazed by cattle during the winter months.
Table 2 shows that the highest NOg nitrogen concentra-
tions in the shallow groundwater at a depth of 3.6 m
were found under the control area. Although the control
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Table 2. Mean NOj N concentrations in shallow groundwater by depth and treatment at

dairy lagoon wastewater application site

Depth, m
Treatment 1.2 2.4 3.6
Wastewater
Low N rate, 496 kg of N-ha tyr~? 45%% 36% 16>
High N rate, 1018 kg of N-ha-yr! 423 28» 16%*
Control
Inorganic N at recommended rates, 491 kg of N-ha.yr! 34b% 28bx 31%

abMeans within depths with different superscripts differ (P < 0.05) according to a LSD test.
®¥2Means within treatments with different superseripts differ (P < 0.05) according to a LSD test Hubbard

et al. (1987).

area was selected with the initial hypothesis that it
would have low NO; nitrogen concentrations in shallow
groundwater compared with areas receiving dairy la-
goon wastewater (because it received less applied N
and did not have wastewater applied daily), in reality,
the inorganic N applications at recommended rates for
quality forage production plus waste from the grazing
animals resulted in higher NOj nitrogen concentrations
in the shallow groundwater at 3.6 m under the control
area, than those found under the areas receiving lagoon
wastewater. This finding of worse groundwater quality
for NOj nitrogen under forage production with grazing
compared with high loadings of liquid animal wastes
shows that it cannot be assumed that grazing and for-
age systems will enhance water quality. Without care-
ful consideration of total N applications from the graz-
ing and forage production system, NO; nitrogen con-
tamination of shallow ground water can occur.

Phosphorus

Phosphorus is of environmental concern because ex-
cess amounts in surface water bodies may cause eutro-
phication. Phosphate is a soluble agricultural chemical
that may be moved from point of application by surface
runoff or move out of the soil surface layer with percola-
tion. In general, PO, is considered to be of concern
primarily for surface runoff since it binds to Fe, Al,
or Ca in the soil depending on pH and is not readily
leachable. Soluble PO, and PO, associated with sedi-
ment in surface runoff have been found to vary linearly
with P application rate (Romkens and Nelson, 1974).
Low concentrations of dissolved PO, have been found
in runoff from deep incorporation of fertilizers (Holt et
al., 1970). Movement of PO, through the soil profile
varies with soil texture. For nonsandy soils, the leach-
ing of PO4 with percolating water is extremely low or
indetectable. The PO, content of percolate from non-
sandy soils can be within an order of magnitude of 0.1
mg/L (Russell, 1961). Numerous investigators (Spen-
cer, 1957; Hingston, 1959; Russell, 1960; Bolton and
Coulter, 1996), however, have shown that in very sandy
soils, PO, will move down the profile to a considerable

depth (>1.0 m). On the basis of diffusion studies, Olsen

and Watanabe (1970) concluded that there was an
eight-times-greater risk of PO, pollution of ground wa-
ter from sands than from clays.

The contribution of P from animal wastes can under
some circumstances represent a significant fraction of
the P circulating in agricultural systems. Where fecal
matter is deposited into farm ponds or streams the
direct effect may be noticeable. Most severe P problems
related to animal wastes may arise where there are
local, high density animal populations in feedlots, barn-
yards, or pastures close to streams (Schepers and Fran-
cis, 1982; Schepers et al., 1982; Fisher et al., 2000).
Actual losses will depend upon management practices.
Chichester et al. (1979) showed that concentrations of
P in runoff were not increased by summer grazing of
pasture in Ohio, but where animals were pastured
throughout the year, winter damage to the soil surface
(trampling from hooves damaging vegetation and caus-
ing soil compaction) caused both increased runoff and
nutrient discharge.

Pathogens

Water quality in many lakes and rivers has been
impaired by the presence of high levels of fecal coliform
bacteria, which is indicative of contamination by feces
(Jones and Roworth, 1996; Ackman et al., 1997). Such
contamination brings the threat of infection for people
who use the water for drinking, bathing, or watering
fruits and vegetables. Underlying this concern are nu-
merous reports of waterborne outbreaks of disease in-
volving fecal organisms such as Escherichia coli
Q157:H7, Campylobacter jejuni, Salmonella species,
Vibrio cholerae, and shigellae (Jones and Roworth,
1996; Gugnani, 1999; Licence et al., 2001). Other bacte-
rial infections that can be transmitted in water from
animal to animal and from animal to human include
Listeria, Leptospira, Brucella, Coxiella, and Myco-
plasma (Hensler et al. 1970; Young 1974; Hatfield et
al., 1998). Nonbacterial infectious agents that can be
transmitted in water include fungi and protozoa (Cryp-
tosporidium). Managers of modern manure manage-
ment systems, including grazing, must take into ac-
count the possibility of disease transmission through
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the environment and must therefore try to prevent ma-
nure-laden runoff from reaching water bodies. It is also
important to determine whether the source of fecal con-
tamination is of human, livestock, or wildlife origin, as
microorganisms of human origin are regarded as hav-
ing greater potential to cause disease in humans (Puech
et al., 2001).

Recent interest in this area has focused on Crypt-
osporidium parvum, a widespread protozoan parasite
afflicting animals and humans (Wright, 1998). The
dominant mode of transmission of C. parvum to humans
is believed to be via contaminated drinking water and
recreational waters. Zoonosis is the term used to de-
scribe infections crossing hosts, such as the case with
C. parvum. Although no clear-cut epidemiological cause
and effect has been established, it is widely believed
that farm animals are the predominant source of C.
parvum, Dairy farms are particularly suspect as poten-
tial sources of C. parvum because newborn calves are
readily infected and excrete large numbers of the infec-
tious stage (oocyst) of this organism (Wright, 1998).

Oxygen-Demanding Materials

Manure from grazing animals contains organic mat-
ter, which can serve as oxygen-demanding materials
(Hatfield et al., 1998). Organic matter serves as an
energy source for aerobic bacteria in a receiving stream
or lake. Increased bacterial metabolism resulting from
a discharge of organic waste into a water body increases
the oxygen depletion rate of the water. If the rate of
oxygen depletion exceeds the aeration rate of the
stream, oxygen depletion occurs. Decreased or depleted
oxygen levels can result in fish kills and anaerobic con-
ditions in the stream or other water body.

Organic matter in contaminated waters has histori-
cally been measured as biochemical oxygen demand
(BOD). This is a measure of the amount of oxygen re-
quired to metabolize waste during a specified time, usu-
ally 5 d (Hatfield et al., 1998). Another measure of or-
ganic strength of a waste is chemical oxygen demand
(COD), which is based on chemical rather than biologi-
cal oxidation. Chemical oxygen demand will exceed the
BOD demand value for animal wastes, since animal
manure and other waste products contain organic mate-
rials resistant to aerobic bacterial degradation. Chemi-
cal oxygen demand/BOD demand ratios vary from 3.5
to 6.5 depending on species and feed rations (Hatfield
et al.,, 1998). The ASAE standards (2003) show COD
ranging from 7.8 to 11 kg and biochemical oxygen de-
mand ranging from 1.6 to 3.1 kg (Table 1).

Importance of Landscape Scale in Evaluating
Potential Water Quality Effects
of Grazing Animals

Concerns with grazing animals relate primarily to

_animal density and quality of forage stand. Assuming

a good forage stand with protection of the soil surface

against erosion, there are few environmental concerns
at low grazing animal density. Concerns at low animal
density primarily relate to the animals having free ac-
cess to water bodies in which they can deposit urine
and manure, and the accompanying problems with N,
P, pathogens, and organic matter, which affect bio-
chemical oxygen demand and chemical oxygen demand.
Common good grazing management practices at both
low and medium animal densities that alleviate nutri-
ent and pathogen management issues include rota-
tional grazing, portable water supply, portable shade
source, and fencing animals from water bodies.

Most environmental concerns with grazing animals
occur at high animal densities. With high animal densi-
ties, forages may be overgrazed, trodden, and signifi-
cant soil erosion may occur. Pluhar et al. (1987) com-
pared selected grazing treatments in the Texas Rolling
Plains and showed that grazing caused a significant
decline in infiltration rates and a significant increase
in sediment production as compared to an ungrazed
enclosure. High animal densities result in large
amounts of urine and feces deposited in relatively small
areas and increased probabilities for nutrients and
pathogens to move with surface runoff or enter ground-
water. Urine and feces from grazing animals are depos-
ited at separate times and in different areas of the
pasture. Grazing animals avoid feces piles and sur-
rounding vegetation due to odor at first, and then to
maturity of the vegetation afterwards. Grazing animals
also tend to congregate in shady areas or around water
supplies, which means that there are localized areas
within pastures with much greater trampling damage
and loads of urine and feces.

Landscape scale is an important consideration when
evaluating the potential environmental impacts on wa-
ter quality associated with grazing animals. At the indi-
vidual pasture or field scale, consideration is primarily
related to maintaining a good forage stand, having the
proper numbers of animals per land area, and fencing
animals out of streams and other water bodies. At the
large landscape or watershed scale, grazing animal den-
sities and proximity of operations to streams, rivers,
and lakes are important. An example of a gauged water-
shed where hydrologic flow is measured and water sam-
ples are collected for sediment, N, P, and pathogen anal-
yses is shown in Figure 1. This is the Little River Water-
shed, as gauged by the Southeast Watershed Research
Laboratory, Tifton, GA. The watershed is 334 km? in
area and is gauged in a nested design from the smallest
subwatersheds (K, J) in the upper part of the Little
River Watershed to Station B, which gauges the entire
334 km?® This watershed has relatively few grazing
animals. However, the size and nested design of this
gauged watershed illustrate the scale at which the im-
pact of grazing animals on water quality should be
evaluated.

Although individual pastures with grazing animals
may not appear to be causing water quality problerms
if there is no obvious erosion and the animals are fenced
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SCALE:

0 5
kilometers

LITTLE RIVER WATERSHED
Tifton, Georgia

Figure 1. Schematic of Little River Watershed with subwatershed boundaries and streamflow gauging sites (Tif-

ton, GA).

out of the streams and riparian zones, the true impact
of animal production systems (including grazing) is de-
termined by measurements at a larger landscape or
watershed scale. The overall impact of grazing animals
is the sum of the total animals at the large scale, how
they are distributed over the watershed, and manage-
ment practices within each operation. Water quality
problems associated with grazing animals tend to be
most serious when the total number of animals in a
landscape or watershed significantly exceeds the car-
rying capacity of the land, poor management practices
are used, and when animal operations are in the lower
part of the landscape. Assessment of overall impact of

animal production at the landscape scale must also

consider confined animal production operations. These
operations in general pose a much greater risk to soil
and water quality at both the local and landscape scale
than do grazing operations. '

Riparian Buffer Systems

One landscape management tool that has been found
to be effective in reducing water pollution from both
cropland and grazed areas in the humid eastern part
of the United States is use of riparian buffer systems.
Many studies at different sites in the Gulf Atlantic
Coastal Plain region have shown that concentrations
and loads of N in surface runoff and subsurface flow

. ) ) Downloaded from jas.fass.org by on May 6, 2008, .
Copyright © 2004 American Society of Animal Science. Allrights reserved. For personal use only. No other uses without permission.




Grazing and water quality E261

PHYSICAL CHARACTERIZATION OF THE RIPARIAN BUFFER

UPLANDS
(CROPLAND OR PASTURE)

Figure 2. Schematic of three zone riparian buffer system. Zone III is grass; Zone Il represents managed trees that
are periodically harvested; Zone I shows hardwood trees that protect the stream bank.

are markedly reduced after passage through a riparian
forest (Lowrance et al., 1983, 1984; Peterjohn and Cor-
rell, 1984; Jacobs and Gilliam 1985; Hubbard et al.,
1996). The limited field data on using riparian forests
to control agricultural nonpoint source pollution has
been integrated into draft national specifications for
riparian buffer systems by the USDA-Natural Re-
sources Conservation Service and Forest Service. These
draft specifications provide for a riparian buffer system
of three zones (Figure 2). Zone 1 is a narrow band of
permanent trees (5 to 10 m wide) immediately adjacent
to the stream channel, which provides streambank sta-
bilization, organic debris input to streams, and shading
of streams. Zone 2 is a forest management zone where
maximum biomass production is stressed, within limits
placed by economic goals. Zone 2 may be harvested on
appropriate rotations (20 to 60 yr). Zone 3 is a grass
buffer strip up to 10 m wide used to provide control of
coarse sediment and spreading of overland flow. In drier
portions of the United States, where tree growth is
difficult, buffers of grasses have been advocated. How-
ever, recent work by Hubbard et al. (2003) indicates
that grasses alone are not as effective in assimilating
nutrients as combined grass-riparian forest buffers.
On January 15,2003, the U.S. Environmental Protec-
tion Agency adopted new Federal rules governing ani-
mal feeding operations (http:/cfpub.epa.gov/npdes/in-
dex.cfm). All states must now adopt new rules that are
at least as stringent as these new federal rules. The
new rules require 30.4 m setbacks from surface water
or 10.6 m vegetated buffers on all large animal feeding
operations. Although these rules are specific to confined
animal feeding operations rather than grazing animals,

inclusion of riparian buffers into grazing of pastures
is recommended.

Implications

Forage production and grazing animal systems can

. both positively and negatively affect water quality.

Compared with cropland, forage systems protect the
soil surface from erosion, and, if fertilizer and animal
waste inputs are low to moderate, both surface and
ground water quality under grazed areas may be better
than that under cropped areas. The water quality con-
taminants of concern from grazing systems are sedi-
ment (erosion), N, P, pathogens, and organic matter.
Grazing animals negatively affect water quality when
the number of animals exceeds the carrying capacity
of the land (at both the pasture and watershed scales).
Forage production may have negative effects on water
quality when fertilizer plus animal waste inputs exceed
crop nutrient needs, or when forage quality is poor and
80il erosion can occur. Grazing animal systems should
be managed to include adequate land area for animal
numbers at the field and landscape scale, fencing ani-
mals out of streams and lakes, and use of riparian buffer
systems to assimilate sediment, nutrients, and patho-
gens from grazing animals.
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